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Abstract
Sky island species face climate-driven and anthropogenic habitat loss and population fragmentation, and are therefore 
vulnerable to genetic erosion. We conducted a genetic study of the cryptic and threatened alpine she-oak skink (Cyclodo-
morphus praealtus) throughout its range, across two regions of the mainland Australian Alps; an extensive high elevation 
plateau in the north (‘Kosciuszko Plateau’) and several smaller plateaus in the south (‘southern plateaus’). We investigated 
whether extensive potential habitat across Kosciuszko Plateau supported larger, connected populations with better genetic 
health than more fragmented southern plateaus. Our analyses of genome-wide markers confirmed effective isolation of the 
two regions. We identified three populations from the southern plateaus, largely aligning with discrete landforms, and four 
populations on Kosciuszko Plateau. Only one individual, from the southern-most population, showed evidence of admixture 
between the two regions. Across its range, C. praealtus populations had low genetic diversity and small effective population 
sizes. In contrast to our expectations, Kosciuszko Plateau populations were smaller, with greater genetic differentiation and 
a higher degree of inbreeding than the southern populations. We detected admixture between populations on Kosciuszko 
Plateau, while the southern plateaus had limited admixture. We found no evidence of local adaptation, suggesting plateaus 
represent interglacial refugia. Our results suggest that C. praealtus has little capacity to withstand further disturbance or 
rapid environmental changes. Maintaining or restoring habitat quality in occupied and suitable connecting habitats across 
the species’ range is paramount. ‘Genetic rescue’ should be investigated as an option to mitigate the effects of isolation and 
improve population resilience.

Keywords  Fragmentation · Genetic diversity · Population differentiation · Single nucleotide polymorphisms (SNP) · Sub-
alpine · Threatened species

Introduction

‘Sky islands’ are high elevation landscapes fragmented by 
a ‘sea’ of lowlands that may be formed through palaeocli-
matic and/or anthropogenic processes (Robin et al. 2015). 
Lowland areas can act as strong barriers to dispersal (Chala 
et al. 2017; Mairal et al. 2017); sky island systems therefore 
often support a high degree of endemism as well as ancient 
lineages (Chala et al. 2017; Mairal et al. 2017; He et al. 
2019; Suissa et al. 2021). Globally, species are predicted to 
respond to climate change via adaptation or shifting their 
distributions to stay within their niches (Román-Palacios and 
Wiens 2020). If not already occupying the highest avail-
able areas, cold-adapted species may be forced to retreat 
to higher elevations as lowlands become unsuitably warm, 
which can lead to population fragmentation (Raxworthy 
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et al. 2008; Wiens et al. 2019; Freeman et al. 2021). Isolated 
populations face increased genetic drift and loss of genetic 
diversity, which affects long-term viability (Irwin 2002). 
Habitat protection and assisted admixture among otherwise 
isolated populations are increasingly important to prevent 
local extinctions and to ensure the persistence of alpine sky 
island species (Ralls et al. 2018).

Effective conservation requires insights from key popu-
lation parameters, such as size and connectivity (Scheele 
et al. 2018; Woinarski 2018; Sullivan et al. 2020). While 
collecting such information has previously been challeng-
ing, modern genetic-based technology provides a rigorous, 
cost-effective means of assessing population parameters and 
resilience (O’Donnell et al. 2018; Atkins et al. 2019; Amor 
et al. 2020). For example, recent studies on mountain reptiles 
have used genetic data to calculate key population param-
eters and infer barriers to gene flow (e.g. Saijuntha et al. 
2017; Agarwal et al. 2019; Esquerré et al. 2019; Wiens et al. 
2019), thereby addressing knowledge gaps and informing 
conservation decisions.

Australia is a hotspot for reptile diversity. However, pop-
ulation trends for 34.2% of Australia’s terrestrial reptiles 
remain unknown, and the proportion listed as threatened is 
increasing (Tingley et al. 2019). Notably, Australia’s sky 
island species face an uncertain future (Parida et al. 2015; 
Sritharan et al. 2021) due to warming temperatures and 
relatively low mountain elevations (McGowan et al. 2018). 
Genetic studies in Australia’s mainland Alps have identi-
fied signals of isolation by distance or landscape barriers in 
reptiles (Chapple et al. 2005; Koumoundouros et al. 2009; 
Haines et al. 2017; Atkins et al. 2019), amphibians (Banks 
et al. 2020), mammals (Mitrovski et al. 2007) and inverte-
brates (Endo et al. 2015). These studies commonly identified 
genetic differentiation between populations on Kosciuszko 
Plateau and the smaller southern plateaus, and linked past 
fluxes in connectivity and isolation to glacial periods, con-
sistent with evidence of climate-driven fragmentation on 
other continents (Chala et al. 2017; Mastretta‐Yanes et al. 
2018; Wiens et al. 2019; Tonzo & Ortego 2021). One such 
study identified alpine she-oak skink (Cyclodomorphus prae-
altus Shea 1995; Scincidae) populations from Kosciuszko 
Plateau and the southern plateaus as two Evolutionary Sig-
nificant Units (Koumoundouros et al. 2009). However, that 
study had low sample numbers from Kosciuszko Plateau 
(n = 5, from a single location) and additional occupied sites 
have since been identified, extending the species’ known 
range (Clemann et al. 2016; NSW Environment Energy and 
Science 2021).

Here, we analyse genome-wide markers to assess genetic 
diversity and population differentiation of C. praealtus 
across its range in the mainland Australian Alps. We asked 
whether smaller plateaus support populations that are more 
genetically isolated and potentially more susceptible to 

extinction. Cyclodomorphus praealtus habitat is extensive 
across Kosciuszko Plateau but occurs in smaller patches 
fragmented by steep forested valleys across the southern pla-
teaus. Due to habitat specialisation and a relatively limited 
dispersal capacity, we anticipate that Kosciuszko Plateau 
populations will be distinct from populations on the southern 
plateaus. Further, ecological theory predicts that larger habi-
tats support larger populations with a lower extinction risk 
(Hanski 1999), therefore, we expect that Kosciuszko Plateau 
populations will exhibit greater gene-flow and better genetic 
health than populations on the southern plateaus.

Materials and methods

Study region

The high plateaus of the mainland Australian Alps (Fig. 1) 
are likely to be the remnants of a peneplain formed in the 
Mesozoic and uplifted to its current elevation approximately 
8–4 Ma (Webb 2017). The Murray River Valley separates 

Fig. 1   Mainland Australian Alps, showing the contiguous Kosciuszko 
Plateau and fragmented southern plateaus, and current elevational 
range of C. praealtus (white, > 1,250  m). Shading corresponds to 
a 1  s digital elevation model (Gallant et  al. 2011), where gray rep-
resents potential historic upland connectivity ~ 20  ka. Letters on 
Kosciuszko Plateau refer to nominal site groupings, where N north-
ern, E eastern, LN lower-northern, C central, LC lower-central, S south-
ern. Sampled southern plateaus were the Bogong High Plains, Mt 
Hotham/Loch area, Lankey/Omeo Plains and Wellington Plain (see 
Fig. 4 for specific sample locations and codes). Black represents low-
lands (< 700  m). Dotted lines show jurisdiction boundaries. Stars 
depict capital cities. Hatched areas represent ocean. Inset shows the 
location of the study area within Australia
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Kosciuszko Plateau in the north (~ 1,200–2,228 m eleva-
tion) from several fragmented plateaus to the southwest 
(~ 1,200–1,986 m elevation), creating two alpine regions on 
mainland Australia. The Kosciuszko Plateau is relatively 
large and undulating with steep slopes to the west and grad-
ual slopes to the east (Webb 2017). It supports ~ 90,000 ha 
of potential C. praealtus habitat, compared to ~ 70,000 dis-
junct hectares across the plateaus and broad ridges to the 
south (McDougall and Walsh 2007). The Kosciuszko Pla-
teau was the only mainland Australian region to experience 
Late Pleistocene glaciation; most extensively ~ 59,000 ya and 
least extensively ~ 17,000 ya (Barrows et al. 2001).

We sampled C. praealtus from Kosciuszko Plateau 
and the four southern plateaus where the species occurs 
(Fig. 1)—Bogong High Plains, Mt Hotham/Loch area, Lan-
key/Omeo Plains, and Wellington Plain. While the south-
ern plateaus are largely separated by steep valleys below 
1,250 m elevation, the Mt Hotham/Loch area connects to 
adjacent plateaus by elevations > 1,250 m (within suitable 
elevation for C. praealtus). However, these steep forest con-
nections are unlikely to provide functional C. praealtus dis-
persal habitat.

Study species

Most reptile species endemic to the mainland Australian 
Alps are listed as threatened (Tingley et al. 2019). Cyclodo-
morphus praealtus is listed as Endangered by the Australian 
Government and IUCN due to its restricted distribution and 
ongoing threats, including climate change, habitat loss and 
fragmentation by infrastructure development, and habitat 
degradation caused by exotic herbivores (Australian Gov-
ernment 1999; Clemann et al. 2018). The species occurs in 
habitats that are largely treeless (Sato et al. 2014; Robertson 
and Coventry 2019) above 1250 m elevation (NSW Environ-
ment Energy and Science 2021). Cyclodomorphus praealtus 
has low detectability and surveys of it are resource-intensive. 
Consequently, genetic analyses are valuable for assessing 
population parameters.

Captures and tissue collection

We collected tissue samples from animals captured at 
58 sites between January 2017 and April 2020. Across 
Kosciuszko Plateau, we collected 91 samples from 34 sites 
nominally grouped into six broad areas (Fig. 1). Across the 
four southern plateaus, we sampled 185 individuals from 24 
sites. Each site was separated by over 100 m and comprised 
10–25 artificial refuges (roof tiles). For each captured ani-
mal, we removed the distal 2–3 mm from its tail and stored 
it in ≥ 90% ethanol (n = 1–24 samples per site).

DNA extractions and sequencing

Diversity Arrays Technology (DArT), ACT 2617, Aus-
tralia, extracted and sequenced DNA from our samples 
(n = 276, randomly allocated to wells). We replicated sam-
ples from three randomly chosen individuals for quality con-
trol. A medium density assay was sequenced via Illumina 
HiSeq2500, as per Atkins et al. (2019).

Data filtering

Using the pairwise Hamming distance matrix report pro-
vided by DArT, we compared pairwise distance among indi-
viduals within each site (mean = 0.097, standard deviation 
[sd] = 0.008) and our included replicates (mean = 0.008, 
sd = 0.004) to avoid accidental inclusion of recaptured indi-
viduals. There was a 9–15 times ‘distance gap’ between the 
reported distance among replicates (1.0%) and non-repli-
cates (6.0%; Online Resource Fig. 1) across all individuals. 
We chose an upper distance limit of 1.5% to represent error 
among our replicates associated with library preparation 
and sequencing, after a replicated individual (BHP01G) was 
found to share an abnormally low pairwise distance with 
two independently sampled individuals (0.5%, which we 
considered a replicate sample; and 1.5%, which we suspect 
was a potential relative). Therefore, we considered any pair 
of samples that differed by < 1.5% as recaptured samples 
(n = 17/276; 6.2%).

We converted our raw, single-row DArTseq report into 
a ‘genlight’ object using the ‘dartR’ package v2.0.4 (Gru-
ber et al. 2018) in R v4.0.5 (R Core Team 2020). Our raw 
dataset contained 121,039 loci from 276 individuals and 
20% missing data with a mean reproducibility of 99.3% 
(range 86–100%). We randomly removed one sample rep-
resenting each of our 17 recaptured individuals (n = 259; 
Kosciuszko Plateau = 88; southern plateaus = 171; Online 
Resource Fig. 1). We filtered data using a DArT-generated 
‘reproducibility score’ threshold of ≥ 95% to ensure suffi-
cient loci retention and quality, removed loci with a call rate 
of ≤ 75% (Alam et al. 2018) to balance data quality and vol-
ume, set a minimum depth of 10 reads per site, per individ-
ual. This dataset included 35,947 loci (mean depth = 17.5, 
missing data = 6.1%, secondary loci = 13,606). To inves-
tigate population structure, we filtered our 35,947 loci to 
remove those with a minor allele count of three (32,793 
loci). This allowed us to retain rare alleles but remove single-
tons and doubletons that can confound inferences of popula-
tion structure (Linck and Battey 2019).

Although missing data leads to artefactual differentiation 
between observed and expected single nucleotide polymor-
phisms (SNP)-based and genomic/autosomal heterozygosity 
(based on both variant and invariant sites) (Schmidt et al. 
2021), only 212 of our loci had a call rate of 1 (no missing 
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data). Therefore, we calculated heterozygosity after retain-
ing only loci from our 35,947 loci, that had ≤ 5% missing 
data (21,177 loci with mean missingness of 2.35%). Prior 
to calculating SNP-based estimates of population-level het-
erozygosity, we separated individuals into respective data-
sets, based on our genetic clustering results (see below). We 
then removed monomorphic loci (locally fixed, but variable 
between regions) to avoid lowering SNP-based calculations 
of heterozygosity for each inferred population via the inclu-
sion of fixed sites.

Detection of non‑neutral markers

We investigated putative non-neutral loci via ‘BayeScan’ 
v2.1 (Foll and Gaggiotti 2008), ‘OutFLANK’ v0.2 (Whit-
lock and Lotterhos 2014) and ‘pcadapt’ v4.3.3 (Luu et al. 
2017). We discarded loci with a minor allele frequency 
(MAF) of ≤ 5% (retaining 15,957 loci) to reduce detection 
of false positives in subsequent outlier analyses and applied 
a false discovery rate of 10%. We performed 20 independent 
pilot BayeScan runs of 5,000 iterations each. Our final analy-
sis comprised 50,000 initial iterations discarded as burn-in, 
and a final 100,000 retained samples. Our OutFLANK analy-
ses were performed via the dartR package, using default 5% 
false discovery, as well as upper and lower flanking rates. 
The default of 10% heterozygosity was required before any 
locus was included in calculations. To run pcadapt, we con-
verted our genlight object to a SNP matrix. We set an initial 
K-value of 20, then reduced this to the value prior to plateau 
using PCA scree plots. Outlier discovery via pcadapt (Jom-
bart 2008) was based on q-value and Benjamini–Hochberg 
Procedure, which estimated 2,265 putative outliers. Only 
putative loci identified using multiple approaches were 
considered true outliers and were isolated from our data-
set. BayeScan and OutFLANK failed to identify any outlier. 
Therefore, we did not filter any outliers from our dataset. 
This resulted in 15,957 loci for all individuals (6.8% miss-
ing); 17,452 loci for Kosciuszko Plateau (9.5% missing); 
and 11,219 loci for the southern plateaus (5.7% missing), 
which retained between 31 and 49% of our loci across the 
three datasets.

Genetic clustering

We applied three methods of genetic clustering to inves-
tigate population structure across the geographic range of 
C. praealtus, using 32,793 loci with a minor allele count 
of three. For Discriminant Analysis of Principal Compo-
nents (DAPC), we estimated the number of clusters (K) best 
explained by our data via a k-means algorithm. We then 
performed a-score optimization to determine the number 
of principal components that best described our data, while 
avoiding over-fitting the model. With this information, we 

ran DAPCs without a priori locality information to deter-
mine the genetic structure among our pre-identified genetic 
clusters using the ‘adegenet’ v2.1.7 (Jombart 2008) package 
in R.

Secondly, we used ‘fastSTRU​CTU​RE’ v1.0 (Raj et al. 
2014) to determine a suitable number of genetic clusters in 
our dataset. We investigated the optimal K-value among (i) 
all; (ii) Kosciuszko Plateau; and (iii) the southern plateau 
individuals, comprising ten replicate runs of each K-value, 
from K = 1 to K = (n sites − 1). We loaded the resulting Mar-
ginal Likelihood outputs into the Cluster Markov Packager 
Across K (CLUMPAK) (Kopelman et al. 2015) online server 
‘bestK’ algorithm. Optimal K-values were determined via 
log-likelihood probability (Pritchard et al. 2000) analysed 
and plotted using ‘pophelper’ v2.3.1 (Francis 2017).

Finally, we investigated population structure on 
Kosciuszko Plateau and the southern plateaus using ‘genel-
and’ v4.9.2 (Guillot et al. 2005)—a Bayesian algorithm 
that incorporates geography with genetic data and deline-
ates populations in context with their spatial arrangements. 
We input geographic coordinates for each genetic sample 
and set the ‘geneland’ frequency model to ‘correlated’ for 
these analyses because DAPC and fastSTRU​CTU​RE showed 
correlation between genetic signal and geography. Each run 
comprised a chain length of 40,000 generations, and we set 
the minimum and maximum number of populations to one 
and ten, respectively. We performed three independent runs 
per region, each with a different seed for starting popula-
tion number (‘npopinit = 1, 4, 8’) to address potential bias 
introduced by our chain starting point. We discarded the first 
10% of each chain as burn-in.

Genetic diversity and demography

We calculated genetic diversity measures across all individu-
als, individuals within regions, and among our identified 
genetic clusters. Observed heterozygosity (Ho) and unbiased 
expected heterozygosity (He) and the degree of inbreeding 
were calculated across all variant sites (SNP heterozygo-
sity) and across variant and invariant sites (autosomal/
genomic heterozygosity). Autosomal/genomic heterozygo-
sity is more robust to missing data, small and uneven sample 
sizes (Schmidt et al. 2021) and is considered more accurate 
and comparable across studies/organisms (Westbury et al. 
2018, 2019). We calculated the number of invariant sites 
(‘gl.report.secondaries’), genomic/autosomal heterozygo-
sity (‘gl.report.heterozygosity’), and FST and Dest (‘gl.basic. 
stats’) using dartR. Allelic richness (Ar) was generated via 
the ‘hierfstat’ v0.5-7 (Goudet & Jombart 2020) package 
and Hedricks G”ST (Hedrick 2005; Meirmans & Hedrick 
2011) was calculated in ‘mmod’ v1.3.3 (Winter 2012). We 
generated these statistics across all individuals and among 
collection sites within Kosciuszko Plateau and the southern 
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plateaus (Online Resource Tables 1–5). We calculated Taji-
ma’s D statistic to determine whether demographic expan-
sion or contraction was evident. To do so, we converted our 
genlight object to a variant call format (VCF) file which 
was loaded into ‘VCFtools’ v0.1.16 (Danecek et al. 2011). 
A minor allele count of three was applied to our 35,945 loci 
dataset before analyses, resulting in 32,793 retained SNPs. 
These SNPs were binned sequentially into 22 groups of ran-
dom sizes (between 560 and 2604 SNPs). Calculations were 
performed on binned SNPs to enable detection of variation 
across our dataset.

Population differentiation

To determine the degree of genetic differentiation among 
populations, we performed 1,000 permutations of three fixa-
tion indices; Hedrick’s G”ST, Jost’s D statistic (Jost 2008; 
Dest) and Weir and Cockerham’s FST (Weir and Cockerham 
1984) among our inferred genetic clusters. We then inves-
tigated the correlation between genetic and geographic 
distance via Mantel’s R statistic in the R package, ‘vegan’ 
v2.5-6 (Oksanen et al. 2019). We generated two independ-
ent Euclidean distance matrices among individuals using 
genetic and geographic data, then tested for strength and 
significance of their correlation using 1,000 randomized 
permutations of the Mantel test. We performed analysis of 
molecular variance (AMOVA) using the R package ‘poppr’ 
v2.9.2 (Kamvar et al. 2014), which we used to determine the 
degree and significance of differentiation between regions 
and populations. AMOVA analyses were hierarchical and 
included three levels of stratification: (i) between regions, 
(ii) among our inferred genetic clusters and (iii) among col-
lection sites. We tested significance by comparing observed 
genetic variation among stratifications where samples were 
randomly swapped among groups (1,000 permutations). 
To determine the relative timing of population divergence 
across the species’ range, we calculated the ratio between the 
proportion of shared alleles (DPS) and FST (expected to be 
high in recently isolated populations and to return to equi-
librium over time). First, we used the ‘graph4lg’ (Savary 
et al. 2020) package in R to calculate pairwise distances 
among populations based on DPS, considered a contempo-
rary measure of gene flow (Robin et al. 2015). Second, we 
calculated the heterozygosity-based pairwise FST, which is 
less sensitive to recent change.

Effective population size

We performed effective population size (Ne) calculations for 
each genetic cluster using the linkage disequilibrium model 
(Waples 2006) in ‘NEestimator’ v2.1 (Do et al. 2014).

Results

Genetic structure

DAPC identified seven genetic clusters when we analyzed 
all individuals (Fig.  2a). Each site had 100% member-
ship assignment to their respective genetic cluster (Online 

Fig. 2   Discriminant analysis of principal components (DAPC) among 
a 259 C. praealtus individuals from 58 sites across both regions; b 
88 individuals from 34 sites on Kosciuszko Plateau; and c 171 indi-
viduals from 24 sites on the southern plateaus. Analyses are based 
on a 32,739 SNPs and b 13,905 SNPs for Kosciuszko Plateau; and c 
10,202 SNPs for the southern plateaus (minor allele count = 3). Clear 
genetic structure is evident between regions and among sites
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Resource Fig. 2). Clear genetic differentiation was evident 
between the two regions. Individuals from the southern pla-
teaus grouped into three distinct clusters, largely reflecting 
distinct plateaus; all individuals from (i) the Bogong High 
Plains and Wellington Plain, (ii) Mt Hotham/Loch area, and 
(iii) Lankey/Omeo Plains, concordant with results from our 
DAPC that included only the southern plateaus individuals 
(Fig. 2c). The geographically isolated individual from Wel-
lington Plain (WP) was genetically similar to those from the 
Bogong High Plains.

Four genetic clusters were associated with Kosciuszko 
Plateau when our analysis included individuals from both 
regions (Fig.  2a). Individuals from northern sites (LP) 
(Fig. 1.) formed a single genetic cluster (purple) that was 
notably distinct from all other Kosciuszko Plateau and 
southern plateaus clusters along discriminant factor 1—the 
primary explanatory variable (DF1 = 51.7% of variance 

explained). The remaining three Kosciuszko Plateau genetic 
clusters were tightly grouped: (i) lower-northern and eastern 
(KI and NP; cyan); (ii) central (GM, HJ, Sc, SP, TM; blue); 
and (iii) lower-central and southern (Ca, Pe, RG; green) 
sites.

Our DAPC analysis of Kosciuszko Plateau individu-
als only (Fig. 2b) showed that K-values of 4 and 5 were 
equally likely (BIC = 645.94; Online Resource Fig. 3b). 
Analysis of K = 4 resulted in four genetic clusters, similar 
to our DAPC-based investigation combining both regions 
(see Online Resource Figs. 4 and 5). However, independ-
ent analyses of Kosciuszko Plateau individuals split the 
lower-northern (KI) from the eastern (NP) sites, placing 
individuals from the eastern sites into a distinct genetic 
cluster (cyan) and the lower-northern individuals into the 
central cluster (GM, HJ, Sc, SP, TM; blue) (Fig. 2b). Anal-
ysis of K = 5 mirrored that of K = 4, except that individuals 

Fig. 3   Bayesian genetic clustering of C. praealtus individuals from 
Kosciuszko Plateau and the southern plateaus, using fastSTRU​CTU​
RE. Analyses are based on a 32,739 SNPs and b 13,905 SNPs for 
Kosciuszko Plateau; and c 10,202 SNPs for the southern plateaus 
(minor allele count = 3). When analysis included Kosciuszko Pla-
teau and the southern plateaus (a) each region comprised two dis-
tinct genetic clusters with minimal sharing of genetic signal between 

regions. Admixture is evident among Kosciuszko Plateau popula-
tions. Analysis of Kosciuszko Plateau samples (b) provided greater 
resolution of genetic structure and fine-scale admixture. A key dif-
ference was noted within the southern plateaus; when all individuals 
were included, signal from Kosciuszko Plateau is seen in the individ-
ual from Wellington Plain (WP) (a). However, this signal is lost when 
only the southern plateaus individuals were analyzed (c)
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from southern sites (Ca; magenta) were considered to be 
distinct from the genetic cluster containing lower-central 
sites (RG, Pe; green) (Fig. 2b).

Our fastSTRU​CTU​RE analyses largely mirrored the 
DAPC results—although analyses of all individuals poten-
tially underestimated genetic structure within Kosciuszko 
Plateau. Of the four Kosciuszko Plateau genetic clusters, 
admixture was noted between neighbouring populations 
(Fig. 3a, b). DAPC results were inconclusive as to whether 
southern (Ca) and lower-central (RG and Pe) were grouped 
(Fig. 2a, b). Our fastSTRU​CTU​RE results revealed that 
these sites differed in their proportion of shared admixture 
with the central population and should thus be grouped. 
We identified two genetic clusters from the southern pla-
teaus, separating Lankey/Omeo Plains from a cluster con-
taining the Bogong High Plains and the Mt Hotham/Loch 
area, with almost no admixture between them (Fig. 3a, c). 
Results were mostly consistent for analyses of individuals 
from the southern plateaus, regardless of whether those 
from Kosciuszko Plateau were included, except that the 
individual from Wellington Plain (WP) displayed a genetic 

signal from Kosciuszko Plateau only in the analyses that 
included both regions (Fig. 3a).

We used the DAPC and fastSTRU​CTU​RE results to 
inform a geo-referenced model investigating population 
structure within each region. Analyses of Kosciuszko Pla-
teau individuals identified six genetic clusters, which closely 
reflected the populations identified via DAPC and fast-
STRU​CTU​RE. However, this algorithm further delimited 
sites with a high degree of admixture from multiple clus-
ters (Fig. 4a). Within the southern plateaus, geo-referenced 
analyses identified the same three genetic clusters as DAPC, 
while also distinguishing Wellington Plain; a result congru-
ent with the fastSTRU​CTU​RE analyses.

Based on these findings, we grouped sites into seven 
genetic clusters (populations): Kosciuszko Plateau: (1) 
green = southern and lower-central (Ca, Pe, RG), (2) 
blue = central and lower-northern (GM, HJ, KI, Sc, SP, TM), 
(3) purple = northern (LP), (4) cyan = eastern (NP); south-
ern plateaus: (5) red = Mt Hotham/Loch area (Hi, HTM, 
Lo), (6) orange = Bogong High Plains and Wellington Plain 
(BH, BHP, Co, CS, Ma, Ne, PV, SK, WP), (7) yellow = Lan-
key/Omeo Plains (La, Om). We grouped the southern and 

Fig. 4   Summary from the three genetic clustering algorithms used 
to identify populations of C. praealtus from a Kosciuszko Plateau 
and b the southern plateaus. Analyses are based on a 13,905 SNPs 
for Kosciuszko Plateau; and b 10,202 SNPs for the southern plateaus 
(minor allele count = 3). Diamonds on each map show site locations, 
and are coloured as per DAPC results. Pie charts reflect the results 

from fastSTRU​CTU​RE, and show the degree of admixture among 
populations (squared brackets on map edges group the sites that share 
100% pie charts). Dashed lines on each map show geo-referenced 
genetic clusters identified via ‘geneland’ (raw ‘geneland’ outputs are 
presented in Online Resource Fig. 6)
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lower-central Kosciuszko Plateau sites into the green clus-
ter because fastSTRU​CTU​RE analyses showed high genetic 
similarity among these three sites, and DAPC k-means anal-
ysis suggested this was equally optimal to delimiting them. 
This had the added benefit of eliminating the occurrence of 
n = 1 for a group, which facilitated filtering out loci with a 
minor allele frequency < 5%.

Genetic diversity and demography

Estimates of genomic/autosomal heterozygosity were low 
(Ho = 0.00082, He = 0.00105; Table 1). Autosomal observed 
and expected heterozygosity calculations were greatest on 
Kosciuszko Plateau (which contrasted less robust findings 
based only on variant sites). Allelic richness was also great-
est across Kosciuszko Plateau as a whole (AR = 1.79). How-
ever, each population within the Kosciuszko Plateau region 
contained low and unique allelic richness (AR ≤ 1.2). This is 
supported by a greater degree of population differentiation 
(Kosciuszko: FST = 0.151, Dest = 0.046, G”ST = 0.234; south-
ern plateaus: FST = 0.089, Dest = 0.026, G”ST = 0.151), lower 
effective population sizes (Kosciuszko: Ne = 11–125; south-
ern plateaus: Ne = 115–203) and greater levels of inbreeding 
(Kosciuszko: FIS=0.224; southern plateaus: FIS = 0.116)—
greater expected, relative to observed, heterozygosity also 
indicates inbreeding. Estimates of Tajima’s D were positive 
for 21/22 bins (0.020–0.468; mean = 0.205; sd = 0.134), and 
negative for a single bin (-0.032) indicating that C. praealtus 
has experienced population contraction (Online Resource 
Table 6).

Within Kosciuszko Plateau, the southern popula-
tion was characterized by the greatest degree of inbreed-
ing (FIS = 0.157) and lowest effective population size 
(Ne = 11.5). The central population had the lowest genetic 
diversity (Ho = 0.00087, He = 0.00097), while the north-
ern population had the lowest allelic richness (Ar = 1.135). 
Genetic distance was highly correlated with spatial arrange-
ments of populations on Kosciuszko Plateau (Mantel’s 
R = 0.801, p = 0.001). Within the southern plateaus, genetic 
diversity was lowest in the Bogong High Plains/Wellington 
Plain population (Ho = 0.00055, He = 0.0006), where allelic 
richness was greatest.

Population differentiation

Genetic and geographic distances among individuals were 
highly and significantly correlated (Table 1), particularly 
among individuals from Kosciuszko Plateau (Mantel’s 
R = 0.8, p = 0.001). Pairwise estimates of genetic differen-
tiation showed that between-region variation was ~ 2.5 times 
greater than within regions (Table 2), indicating that these 
two regions have been isolated for longer than populations 
within them. Kosciuszko Plateau populations had ~ two 

times greater differentiation (G”ST and Dest) than southern 
plateaus populations (1.5 times greater FST). The low DPS/
FST ratios (0.5–0.9; Online Resource Table 7) indicate that 
the observed population structure and levels of isolation are 
historical and not driven by recent human activities. Recall 
the difference in DAPC (Fig.  2) and fastSTRU​CTU​RE 
(Fig. 3) grouping of the Mt Hotham/Loch area and Bogong 
High Plains; these two putative populations are delimited by 
the lowest pairwise genetic differences and the second-most 
recent population divergence across the species’ range.

The results of AMOVAs further supported high genetic 
differentiation between regions and among populations. We 
observed significant genetic variance at all levels of stratifi-
cation, with 29.5% of the overall variation attributed to dif-
ferences between regions (AMOVA: p = 0.001; Table 3), and 
10.5% explained by differences among populations within 
each region. The small amount of variance explained by 
sites within genetic clusters suggests the clusters accurately 
reflect ‘real-world’ populations. Independent AMOVAs of 
Kosciuszko Plateau and the southern plateaus confirmed that 
highly structured clusters in one region did not drive our 
results (p ≤ 0.001; Online Resource Tables 9 and 10).

We estimated effective population sizes of 12–204 breed-
ing individuals among our seven populations (Table 1), 
and < 1,000 breeding individuals in total, suggesting the 
effective population size from the southern plateaus is ~ 2.6 
times larger than Kosciuszko Plateau populations. The 
southern plateaus populations had relatively consistent effec-
tive population size estimates (mean = 159, sd = 33); in con-
trast with Kosciuszko Plateau (mean = 61, sd = 48). Central 
and southern Kosciuszko Plateau effective population sizes 
were the smallest.

Discussion

Fragmentation and low genetic diversity are evident across 
C. praealtus populations, which is consistent with other sky 
island species worldwide (Bálint et al. 2011; Rubidge et al. 
2012; Tonzo and Ortego 2021) and is most likely driven, at 
least in part, by past climate and geological events. We con-
firmed isolation of populations on Kosciuszko Plateau and 
the southern plateaus. Despite apparent habitat continuity, 
populations on Kosciuszko Plateau had greater inbreeding 
and smaller effective population sizes than populations on 
southern plateaus. Populations on southern plateaus largely 
aligned with landforms. Interestingly, markers from both 
regions were present in the southern-most population, which 
was the sole representation of historic habitat connectivity. 
Low genetic diversity and isolated populations with small 
effective population sizes underscore C. praealtus’ potential 
vulnerability to habitat disturbance and stochastic events. 
Given this species’ habitat is currently being impacted 
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by reduced snow cover (Green 2016), extensive grazing 
by exotic species (Hartley et al. 2021), increased fire risk 
(Hoffman et al. 2019) and human infrastructure develop-
ment (Clemann et al. 2018; Normyle and Pittock 2020), 
investigations into census population sizes and demograph-
ics are needed to further clarify the species’ susceptibility 
to extinction.

Geological isolation of alpine plateaus

Genetic analyses have identified divergence in a range of 
species of mountain lizards likely resulting from barriers, 

such as inhospitable habitats (Torres-Pérez et al. 2007; 
Dubey and Shine 2010; Atkins et al. 2019), mountain uplift 
(Mendes et al. 2018), or indirect effects such as predation 
or competition (Tennessen and Zamudio 2008). Our results 
suggest C. praealtus retreated from lower elevations as 
the climate warmed during past interglacial cycles. Aus-
tralian alpine habitats occurred as low as 700 m elevation 
21,000–17,000 years ago (Colhoun and Barrows 2011; Bar-
rows et al. 2021), and likely allowed for a more contiguous 
C. praealtus population, explaining the extant distribution 
of the species. As proposed for other mountain lizards (e.g. 
Atkins et al. 2019; Wiens et al. 2019), it is probable that the 

Table 2   Pairwise G”ST (lower) and Dest (upper) comparisons among C. praealtus genetic clusters identified by fastSTRU​CTU​RE and DAPC

Inter-region comparisons (shown in bold; mean G”ST = 0.564, mean Dest = 0.200) are ~ 2.5 times greater than intra-region comparisons (mean 
G”ST = 0.255, mean Dest = 0.063). Populations from Kosciuszko Plateau show between 1.7–3.2 times greater intra-region differentiation (mean 
G”ST = 0.289, mean Dest = 0.073) than those from the southern plateaus (mean G”ST = 0.188, mean Dest = 0.042). Pairwise FST values are pre-
sented in Online Resource Table 8

Region Genetic 
cluster

elevational 
range (m)

south-
ern KP 
(green)

central KP 
(blue)

northern 
KP (pur-
ple)

eastern KP 
(cyan)

Mt Hotham/
Loch area 
(red)

Bogong 
High and 
Welling-
ton Plains 
(orange)

Lankey/Omeo 
Plains (yel-
low)

Kosciuszko 
plateau 
(KP)

Southern 
(green)

1469–1753 – 0.054 0.103 0.085 0.172 0.163 0.179

Central 
(blue)

1363–1809 0.221 – 0.051 0.062 0.186 0.179 0.193

Northern 
(purple)

1324–1372 0.374 0.214 – 0.082 0.235 0.227 0.242

Eastern 
(cyan)

1331–1357 0.336 0.258 0.331 – 0.208 0.201 0.214

Southern 
plateaus

Mt Hotham/
Loch area 
(red)

1788–1851 0.517 0.533 0.616 0.590 – 0.032 0.048

Bogong High 
Plains and 
Welling-
ton Plain 
(orange)

1530–1859 0.496 0.515 0.601 0.573 0.142 – 0.048

Lankey/
Omeo 
Plains (yel-
low)

1542–1625 0.537 0.553 0.634 0.608 0.212 0.209 –

Table 3   Analysis of molecular 
variance (AMOVA) between 
C. praealtus from Kosciuszko 
Plateau and the southern 
plateaus, as well as the seven 
genetic clusters

To determine the significance of the genetic variation found between regions, we compared observations 
with 1,000 permutations whereby samples were randomly distributed
Effective population size

df Sum Sq Mean Sq Sigma Variation (%) Significance

Between regions 1 245,623.8 245,623.8 934.4 29.5 p ≤ 0.001
Among clusters within regions 5 137,298.4 27,459.7 332.5 10.5 p ≤ 0.001
Among sites within clusters 51 161,249.1 3,161.7 140.7 4.4 p ≤ 0.001
Between samples within sites 201 409,620.9 2,037.9 278.7 8.8 p ≤ 0.001
Within samples 259 383,427.7 1,480.4 1,480.4 46.7 p ≤ 0.001

Content courtesy of Springer Nature, terms of use apply. Rights reserved.
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genetic differentiation we report is driven by fragmentation. 
However, we cannot rule out adaptation to local conditions 
as reduced representation data, utilized here, do not provide 
whole genome coverage (Catchen et al. 2017; Lowry et al. 
2017).

Genetic differentiation among populations

Our results suggest that forested, lower elevation valleys 
prevent admixture among populations from the southern 
plateaus, as little as 10 km apart. In the absence of such 
barriers on Kosciuszko Plateau, gene flow occurred among 
populations separated by over twice this distance. Gene flow 
was not ubiquitous throughout Kosciuszko Plateau, however, 
suggesting relatively localised dispersal. The reasons for 
restricted admixture on Kosciuszko Plateau are unclear and 
warrant investigation. Kosciuszko Plateau populations have 
overlapping elevational ranges (Table 2), and while poten-
tial barriers such as forested slopes and rivers occur within 
and between populations, they do not form comprehensive 
geographical breaks, as they do for the southern plateaus.

We speculate that glacial activity isolated Kosciuszko 
Plateau populations historically. Southern and central popu-
lations may have been divided by glaciation along the Snowy 
River Valley (Colhoun and Barrows 2011). Fragmentation 
of northern, eastern and central populations may reflect 
extensive periglacial activity that occurred in this area (Bar-
rows et al. 2001), and/or glacial retreat to different sides of 
the mountain range. However, phylogeographic breaks can 
occur in the absence of environmental barriers when species 
have limited dispersal capacity and occur at small population 
sizes (Irwin 2002; Sullivan et al. 2020). Such effects may 
be exacerbated by variation in habitat quality or localized 
extinctions (Irwin 2002); thus the effect of habitat quality 
on C. praealtus should be investigated.

Species resilience

Isolation and small effective population sizes likely 
increased inbreeding and reduced genetic diversity in C. 
praealtus populations. Diversity was lower than recent cal-
culations for the Endangered south-eastern Australian grass-
hopper (Keyacris scurra; Ho = 0.00158–0.00371; Schmidt 
et al. 2021), and our SNP-based estimates of mean observed 
and expected heterozygosity were lower (43–58%) than 
recent estimates for the Endangered Guthega skink, Liop-
holis guthega (Atkins et al. 2019). Overall genetic diversity 
was relatively high across the entire Kosciuszko Plateau, 
however we found low allele diversity and greater differen-
tiation among populations within. In contrast, the southern 
plateaus were less genetically diverse, yet were characterised 
by larger effective population sizes that were less genetically 
discrete and had lower levels of inbreeding. We, therefore, 

speculate that the isolated C. praealtus populations identi-
fied here may have a reduced capacity to withstand further 
habitat degradation or adapt to rapid environmental changes, 
relative to a hypothetical admixed metapopulation. These 
disturbances include infrastructure development (Sato et al. 
2014; Normyle and Pittock 2020), exotic herbivores (Hart-
ley et al. 2021), altered fire regimes (Hoffmann et al. 2019; 
Thomas et al. 2022) and change in vegetation composition 
(Camac et al. 2017) across the species’ range. Further habi-
tat disturbance will likely impact fitness, genetic diversity 
and effective population sizes. The degree of C. praealtus’ 
resilience to environmental change requires a more repre-
sentative ‘genomic’ approach to investigate local adaptation 
and further hypothesis testing.

Management implications and recommendations

Low genetic diversity, and isolated populations with small 
effective population sizes, mean that effective conservation 
of C. praealtus requires informed management interven-
tions. Climate change is causing the retreat of alpine habi-
tats globally (Hansson et al. 2021; Lu et al. 2021) and is 
predicted to reduce C. praealtus habitat as heathlands and 
woodlands expand into grasslands (Camac et al. 2021). Fur-
ther preventable habitat loss, fragmentation, and degradation 
must be avoided. Populations occupying very small areas 
subject to habitat destruction, such as at Mt Hotham, are 
at immediate risk of rapid decline. We recommend regular 
monitoring, including further genetic tissue collection, to 
address key conservation questions such as estimating the 
population census/effective population size ratio (Palstra and 
Fraser 2012; Peart et al. 2020).

Given notably low effective population sizes on 
Kosciuszko Plateau, increasing breeding and survival 
through habitat protection, and potentially population 
augmentation, should be prioritized. When suitable dis-
persal corridors are present, gene flow among populations 
is more likely when populations are larger. Human assisted 
gene flow may be an important conservation action for this 
species because inbreeding is high and populations are 
relatively genetically distinct. However, in the absence of 
historical demography studies for this Endangered spe-
cies, assisted admixture should be preceded by rigorous 
genetic investigations with additional markers and indi-
viduals, and experimental testing of gene pool mixing. 
The southern and eastern Kosciuszko Plateau populations 
are likely priorities for genetic rescue because they have 
the lowest effective population sizes and greatest degree 
of inbreeding. Although we sampled across the species’ 
range, we could not comprehensively sample all popula-
tions due to the species’ low detectability and extensive 
potential habitat. Further research that includes additional 
samples is needed to determine the cause of small effective 
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populations sizes, dispersal capacity and the effects of 
habitat quality on dispersal to inform management.

Although the populations on the southern plateaus will 
benefit from increased population sizes, lower genetic 
diversity and less differentiation among populations 
means maintenance or enhancement of genetic diversity 
and gene-flow among populations are conservation priori-
ties. If a dedicated investigation with additional markers 
and individuals suggest genetic rescue is necessary, the Mt 
Hotham/Loch area and Bogong High Plains populations 
will likely be the most conservative first option for testing 
gene pool mixing because they represent the least geneti-
cally distinct populations; indeed, they are less distinct 
than Kosciuszko Plateau populations where admixture 
is evident at intermediate localities. Further surveys and 
genetic analysis of the Wellington Plain and its surrounds 
are urgent priorities. Although individuals from this site 
are genetically like those from the Bogong High Plains, 
contemporary gene-flow is improbable because they are 
separated by ~ 70 km of forested valleys and ridges. Wel-
lington Plain was extensively burned in a bushfire in early 
2019. Only one (gravid) survivor has been detected since 
then, despite ongoing monitoring. Augmentation may be 
necessary for this population to persist and maintain suf-
ficient genetic diversity. Importantly, genetic rescue alone 
cannot prevent extinction—it must be underpinned by 
habitat protection (Roycroft et al. 2021) and a commit-
ment to address the causes of decline.
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